A dynamic game approach to distributionally robust safety specifications for stochastic systems
نویسنده
چکیده
This paper presents a new safety specification method that is robust against errors in the probability distribution of disturbances. Our proposed distributionally robust safe policy maximizes the probability of a system remaining in a desired set for all times, subject to the worst possible disturbance distribution in an ambiguity set. We propose a dynamic game formulation of constructing such policies and identify conditions under which a non-randomized Markov policy is optimal. Based on this existence result, we develop a practical design approach to safety-oriented stochastic controllers with limited information about disturbance distributions. This control method can be used to minimize another cost function while ensuring safety in a probabilistic way. However, an associated Bellman equation involves infinite-dimensional minimax optimization problems since the disturbance distribution may have a continuous density. To resolve computational issues, we propose a duality-based reformulation method that converts the infinite-dimensional minimax problem into a semi-infinite program that can be solved using existing convergent algorithms. We prove that there is no duality gap, and that this approach thus preserves optimality. The results of numerical tests confirm that the proposed method is robust against distributional errors in disturbances, while a standard stochastic safety specification tool is not.
منابع مشابه
Monetary and Fiscal Policy Interaction in Iran: A Dynamic Stochastic General Equilibrium Approach
Achieving the goals of price stability, sustainable economic growth, and the improvement of many economic variables require coordination between the monetary and financial authorities. In this study, a new modified Keynesian stochastic dynamic equilibrium general equilibrium model is introduced for Iran and in the framework of game theory, optimal policy of fiscal and monetary authorities are d...
متن کاملRobust inter and intra-cell layouts design model dealing with stochastic dynamic problems
In this paper, a novel quadratic assignment-based mathematical model is developed for concurrent design of robust inter and intra-cell layouts in dynamic stochastic environments of manufacturing systems. In the proposed model, in addition to considering time value of money, the product demands are presumed to be dependent normally distributed random variables with known expectation, variance, a...
متن کاملDemand-oriented timetable design for urban rail transit under stochastic demand
In the context of public transportation system, improving the service quality and robustness through minimizing the average passengers waiting time is a real challenge. This study provides robust stochastic programming models for train timetabling problem in urban rail transit systems. The objective is minimization of the weighted summation of the expected cost of passenger waiting time, its va...
متن کاملApplication of Stochastic Optimal Control, Game Theory and Information Fusion for Cyber Defense Modelling
The present paper addresses an effective cyber defense model by applying information fusion based game theoretical approaches. In the present paper, we are trying to improve previous models by applying stochastic optimal control and robust optimization techniques. Jump processes are applied to model different and complex situations in cyber games. Applying jump processes we propose some m...
متن کاملExistence of Nash equilibrium for distributionally robust chance-constrained games
We consider an n-player finite strategic game. The payoff vector of each player is a random vector whose distribution is not completely known. We assume that the distribution of the random payoff vector of each player belongs to a distributional uncertainty set. Using distributionally robust approach, we define a chance-constrained game with respect to the worst-case chanceconstraint. We call s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1701.06260 شماره
صفحات -
تاریخ انتشار 2017